2024 SUMMARY PHYSICS 105

TABARAK AL-RAHMMAN

<u>Test bank</u>	
 The density of water is 1.0 g/cm3. If h = 20 cm, the density of the oil (in g/cm3) in the left column of the U-tube shown below is: A. 0.20 B. 0.90 C. 1.0 D. 1.3 E. 5.0 	oil water
2. One piston in a hydrophic lift has an area that is trying the area of the at	· · · · · · · · · · · · · · · · · · ·
2. One piston in a hydraulic lift has an area that is twice the area of the other the smaller piston is increased by Δp the pressure at the larger piston:	ner. when the pressure at
A. increases by $2\Delta p$	
B. increases $by \Delta p/2$	
C. increases by Δp	
D. increases by $4\Delta p$	
E. does not change	Answer: C
 3. Iodine 131 I is widely used in the treatment and diagnosis of the Thyroid of this isotope is : A. 131.0 B. 157.2 C. 6.1 	d gland. The radius (in fm)
D. 5.4	
E. 5.2	Answer: C
 4. A 65-Kg person absorbed a 20-rad dose. How many joules of energy are A. 13 B. 20 C. 65 D. 1300 	e deposited in his body ?
E. 6.5	Answer: A
 5. The activity of 1 gram of radium (Ra , Atomic number = 88 , Atomic ma The half-life of radium (in years) is: A. 226 B. 1580 C. 2280 D. 1170 	ass=226) is exactly 1 Ci .
E. 1950	Answer: B

6.	A 70-Kg researcher absorbs 4.5 × 108 neutrons in a workday , each of energy 1.2 MeV. The relative biological effectiveness (RBE) for these neutrons is 10 . What is the equivalent dosage of the radiation exposure for this researcher, in mrem ? A. 3.7		
	B. 0.39		
	C. 0.77		
	D. 1.2	r	
	E. 12	Answer: D	
7.	A 3.0-mCi source of 32P is implanted in a tumor to give it a 24-Gy dose. The half-li days, and 1 mCi delivers 10 mGy/min. How long (in min) should the source remain A. 143		
	B. 300		
	C. 240		
	D. 720	r	
	E. 800	Answer: E	
8.		diation can be used on meat products to reduce the levels of microbial pathogens. at for refrigerated meat the upper allowed limit is 3.8 kGy . If a beam of electrons, each .6 Mev irradiates 3.0 Kg of beef , how many electrons should the mass of beef absorb to pper allowed limit ?	
	B. 4.5×10^{10}		
	C. 3.8×10^{16}		
	D. 3.8×10^{10}		
	E. 1.6×10^{10}	Answer: A	
9.	A biological tissue of mass m is exposed to 90 rad of alpha radiation. How many ra	ds of slow	
	neutrons can cause the same biological damage to the same tissue? (For alpha RBE=20, for slow		
	neutrons RBE=5).		
	A. 20		
	B. 100		
	C. 90		
	D. 360	·····	
	E. 1800	Answer: D	
10. A blood vessel of radius r splits into two smaller vessels, each of radius r/2. If the velocity in the larger vessel is V, then the velocity in each of the smaller vessels is :			
	A. V/2		
	B. V/4		
	C. 2V		
	D. 4V	r·-·-·	
	E. V	Answer: C	

 11. Water flows into the top floor of a 16m high building through a pipe of constant 2 c the base of the building (ground level) the water flows into the pipe at a speed of 6 the gauge pressure is 3.2 atm. The gauge pressure (in atm) in the pipe in the top floor A. 0 B. 1.54 C. 2.65 	0 cm/s where
D. 0.65 E. 3.2	Answer: D
 12. The surface of water in a tank supplying water to a house is 10 m above the faucet ² house. If the faucet is 2.0 cm diameter, how long (in s) does it take to fill a 0,25 m3 c house? A. 180 B. 57 C. 14 D. 80 	
E. 114	Answer: B
 13. A lawn sprinkler is made of a 1.0 cm diameter garden hose with one end closed and with a diameter of 0.050 cm, cut near the closed end. If water flows at 2.0 m/s in the (in m/s) of the water leaving a hole is: A. 2 B. 32 C. 40 	
D. 600 E. 800	Answer: B
 14. Water is streaming downward from a faucet opening with an area of 3.0* 10-5 m2 faucet with a speed of 5.0 m/s. The cross sectional area (in 10-5 m2) of the stream 0 faucet is: A. 1.5 B. 2.0 C. 2.5 D. 3.0 	
E. 3.5	Answer: C
 15. Water (density of 1.0 * 103 kg/m3) flows through a horizontal tapered pipe. At the v speed is 4.0 m/s. The difference in pressure between the two ends is 4.5 *103 Pa. The of the water at the narrow end is: A. 2.6 B. 3.2 C. 4.0 	
D. 4.5 E. 5.0	Answer: E

 16. A large tank filled with water has two holes in the bottom, one with twice the radiu In steady flow the speed of water leaving the larger hole is the speed of the smaller. A. twice B. four times C. half 	
D. one-fourthE. the same as	Answer: E
 17. Some species of whales can dive to depths of one kilometer. What is the total press they experience at this depth? (ρsea = 1020 kg/m3, and 1 ATM = 1.01 *105 N/m2) A. 9 B. 90 C. 100 D. 111 E. 130 	ure (in ATM) Answer: C
 18. Water is flowing at 4.0 m/s in a circular pipe. If the diameter of the pipe decreases value, what is the speed (in m/s) of the water downstream? A. 1 B. 2 C. 8 D. 16 E. 4 	to 1/2 its former
 19. What is the net force (in N) inward acting on a spherical bathysphere of diameter 2 ocean depth of 1 000 m? (The pressure inside the bathysphere is 1 ATM, and ρsea = kg/m3). A. 1.26 * 10⁴ B. 1.26 * 10⁵ C. 1.26 * 10⁸ D. 1.26 * 10¹⁰ E. 1.26 * 10¹² 	2.00 m at an
 20. One end of a cylindrical pipe has a radius of 1.5 cm. Water (of density 1.0 * 103 kg steadily out at 7.0 m/s. The rate at which mass (in kg/s) is leaving the pipe is: A. 2.5 B. 4.9 C. 7.0 D. 48 E. 7.0 * 10³ 	· · · · · · · · · · · · · · · · · · ·
 21. The ratio of the radius of a classical electron (2.8 × 10–15 m) to the radius of a 4He A. 2.0 B. 0.68 C. 1.47 D. 0.92 E. 2.4 	r
	Answer: C

 22. The air of velocity 15 m/s and of density 1.3 kg/m³ is entering the Venturi tube (Placed in the horizontal position) from the left. The radius of the wide part of the tube is 1.0 cm ; the radius of the thin part of the tube is 0.5 cm. The tube of shape U connecting wide and thin part of the main tube (see the picture) is filled with the mercury of the density 13600 kg/m³. Determine the height different Ah that stabilizes between the surface of the mercury in U Tube. A. 0.6 cm B. 1.6 cm C. 2.2 cm 	S_2 V_1 V_2 h_0 mercury
D. 1.1 cm E. 7.6 cm	Answer: B
 23. An object with a height of 2.54 cm is placed 36.3 mm to the left of a lens with mm. Where is the image located? A. 977.3 mm B. 877.3 mm C. 290.7 mm D. 111 mm 	h a focal length of 35.0
E. 123.6mm	Answer: A
 24. An object with a height of 2.54 cm is placed 36.3 mm to the left of a lens with mm. What is the height of the image? A683.8mm B798.5mm C. 230.66mm D. 356.78mm E. 123.0mm 	h a focal length of 35.0
 25. A 3-cm high object is in front of a thin lens. The object distance is 4 cm and 8 cm. The image height (in cm) is: A. 0.5 B. 1 C. 1.5 D. 6 	
E. 24	Answer: D
 26. Let p denote the object-lens distance and i the image-lens distance. The image of focal length f has a height that can be obtained from the object height by A. p/i B. i/p C. f/p D. f/i 	multiplying it by:
E. i/f	Answer: B
 27. A camera with a lens of focal length 6.0 cm takes a picture of a 1.4-m boy state height of the image (in cm) is about: A. 0.39 B. 0.77 C. 1.5 D. 3.0 	
E. 6.0	Answer: B

28. An erect object is 2f in front of a convex lens of focal length f. The image is:

- A. real, inverted, magnified
- **B.** real, erect, same size
- **C.** real, inverted, same size
- **D.** virtual, inverted, reduced
- **E.** real, inverted, reduced

Answer: C

f Arkan academy

ℬ www.arkan-academy.com

+962 790408805